Lycopene overproduction in Saccharomyces cerevisiae through combining pathway engineering with host engineering
نویسندگان
چکیده
BACKGROUND Microbial production of lycopene, a commercially and medically important compound, has received increasing concern in recent years. Saccharomyces cerevisiae is regarded as a safer host for lycopene production than Escherichia coli. However, to date, the lycopene yield (mg/g DCW) in S. cerevisiae was lower than that in E. coli and did not facilitate downstream extraction process, which might be attributed to the incompatibility between host cell and heterologous pathway. Therefore, to achieve lycopene overproduction in S. cerevisiae, both host cell and heterologous pathway should be delicately engineered. RESULTS In this study, lycopene biosynthesis pathway was constructed by integration of CrtE, CrtB and CrtI in S. cerevisiae CEN.PK2. When YPL062W, a distant genetic locus, was deleted, little acetate was accumulated and approximately 100 % increase in cytosolic acetyl-CoA pool was achieved relative to that in parental strain. Through screening CrtE, CrtB and CrtI from diverse species, an optimal carotenogenic enzyme combination was obtained, and CrtI from Blakeslea trispora (BtCrtI) was found to have excellent performance on lycopene production as well as lycopene proportion in carotenoid. Then, the expression level of BtCrtI was fine-tuned and the effect of cell mating types was also evaluated. Finally, potential distant genetic targets (YJL064W, ROX1, and DOS2) were deleted and a stress-responsive transcription factor INO2 was also up-regulated. Through the above modifications between host cell and carotenogenic pathway, lycopene yield was increased by approximately 22-fold (from 2.43 to 54.63 mg/g DCW). Eventually, in fed-batch fermentation, lycopene production reached 55.56 mg/g DCW, which is the highest reported yield in yeasts. CONCLUSIONS Saccharomyces cerevisiae was engineered to produce lycopene in this study. Through combining host engineering (distant genetic loci and cell mating types) with pathway engineering (enzyme screening and gene fine-tuning), lycopene yield was stepwise improved by 22-fold as compared to the starting strain. The highest lycopene yield (55.56 mg/g DCW) in yeasts was achieved in 5-L bioreactors. This study provides a good reference of combinatorial engineering of host cell and heterologous pathway for microbial overproduction of pharmaceutical and chemical products.
منابع مشابه
Metabolic engineering of Saccharomyces cerevisiae for astaxanthin production and oxidative stress tolerance.
The red carotenoid astaxanthin possesses higher antioxidant activity than other carotenoids and has great commercial potential for use in the aquaculture, pharmaceutical, and food industries. In this study, we produced astaxanthin in the budding yeast Saccharomyces cerevisiae by introducing the genes involved in astaxanthin biosynthesis of carotenogenic microorganisms. In particular, expression...
متن کاملMetabolic engineering of Saccharomyces cerevisiae for the overproduction of short branched-chain fatty acids.
Short branched-chain fatty acids (SBCFAs, C4-6) are versatile platform intermediates for the production of value-added products in the chemical industry. Currently, SBCFAs are mainly synthesized chemically, which can be costly and may cause environmental pollution. In order to develop an economical and environmentally friendly route for SBCFA production, we engineered Saccharomyces cerevisiae, ...
متن کاملMetabolic engineering of a phosphoketolase pathway for pentose catabolism in Saccharomyces cerevisiae.
Low ethanol yields on xylose hamper economically viable ethanol production from hemicellulose-rich plant material with Saccharomyces cerevisiae. A major obstacle is the limited capacity of yeast for anaerobic reoxidation of NADH. Net reoxidation of NADH could potentially be achieved by channeling carbon fluxes through a recombinant phosphoketolase pathway. By heterologous expression of phosphot...
متن کاملIncreased carotenoid production by the food yeast Candida utilis through metabolic engineering of the isoprenoid pathway.
The yeast Candida utilis does not possess an endogenous biochemical pathway for the synthesis of carotenoids. The central isoprenoid pathway concerned with the synthesis of prenyl lipids is present in C. utilis and active in the biosynthesis of ergosterol. In our previous study, we showed that the introduction of exogenous carotenoid genes, crtE, crtB, and crtI, responsible for the formation of...
متن کاملSystems analysis of methylerythritol-phosphate pathway flux in E. coli: insights into the role of oxidative stress and the validity of lycopene as an isoprenoid reporter metabolite
BACKGROUND High-throughput screening methods assume that the output measured is representative of changes in metabolic flux toward the desired product and is not affected by secondary phenotypes. However, metabolic engineering can result in unintended phenotypes that may go unnoticed in initial screening. The red pigment lycopene, a carotenoid with antioxidant properties, has been used as a rep...
متن کامل